We mainly study Calabi-Yau varieties that arise as cyclic covers of smooth projective varieties branched along simple normal crossing divisors. For some of those families of Calabi-Yau varieties, the period maps factor through arithmetic quotients of complex hyperbolic balls. Examples for base P^n have been found and studied by Sheng Mao, Xu Jinxing and Zuo Kang. We completely classify such examples when the base variety is (P^1)^n. These ball quotients are commensurable to ball quotients in Deligne-Mostow theory, and this shows some commensurability relations among Deligne-Mostow ball quotients. This is a joint work with Chenglong Yu.